Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
RSC Med Chem ; 15(4): 1362-1380, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665823

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and the limited therapeutic options show poor efficacy in patients, associated to severe side effects and development of resistance. Considering that chromene-based scaffolds proved to be attractive candidates for cancer therapy, herein we prepared new chromeno[2,3-d]pyrimidinone derivatives by a simple two step procedure, starting from the reaction of cyanoacetamide and a salicylaldehyde. A cell viability screening in several breast cancer cell lines allowed to identify two promising compounds with IC50 values in the low micromolar range for TNBC cells. These chromenes inhibited cell proliferation, induced cell cycle arrest and triggered cell death through apoptosis. In vivo studies revealed a safe profile in invertebrate and vertebrate animal models and confirmed their capacity to inhibit tumor growth in the CAM model, inducing significant tumor regression after 4 days of treatment. The two compounds identified in this study are promising drug candidates for TNBC treatment and valuable hits for future optimization, using the versatile synthetic platform that was developed.

2.
Environ Int ; 186: 108597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579453

RESUMO

The growing body of evidence links exposure to particulate matter pollutants with an increased risk of neurodegenerative diseases. In the present study, we investigated whether diesel exhaust particles can induce neurobehavioral alterations associated with neurodegenerative effects on glutamatergic and dopaminergic neurons in Caenorhabditis elegans (C. elegans). Exposure to DEP at concentrations of 0.167 µg/cm2 and 1.67 µg/cm2 resulted in significant developmental delays and altered locomotion behaviour. These effects were accompanied by discernible alterations in the expressions of antioxidant genes sod-3 and gst-4 observed in transgenic strains. Behaviour analysis demonstrated a significant reduction in average speed (p < 0.001), altered paths, and decreased swimming activities (p < 0.01), particularly at mid and high doses. Subsequent assessment of neurodegeneration markers in glutamatergic (DA1240) and dopaminergic (BZ555) transgenic worms revealed notable glutamatergic neuron degeneration at 0.167 µg/cm2 (∼30 % moderate, ∼20 % advanced) and 1.67 µg/cm2 (∼28 % moderate, ∼24 % advanced, p < 0.0001), while dopaminergic neurons exhibited structural deformities (∼16 %) without significant degeneration in terms of blebs and breaks. Furthermore, in silico docking simulations suggest the presence of an antagonistic competitive inhibition induced by DEP in the evaluated neuro-targets, stronger for the glutamatergic transporter than for the dopaminergic receptor from the comparative binding affinity point of view. The results underscore DEP's distinctive neurodegenerative effects and suggest a link between locomotion defects and glutamatergic neurodegeneration in C. elegans, providing insights into environmental health risks assessment.


Assuntos
Caenorhabditis elegans , Neurônios Dopaminérgicos , Emissões de Veículos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Emissões de Veículos/toxicidade , Material Particulado/toxicidade , Animais Geneticamente Modificados , Ácido Glutâmico/metabolismo , Locomoção/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Poluentes Atmosféricos/toxicidade
3.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38404918

RESUMO

Inhibition of acetylcholinesterase (AChE) is a common used treatment option for Alzheimer's disease. However, there has been limited research on the potential use of AChE inhibitors for the treatment of Machado-Joseph disease (MJD)/Spinocerebellar Ataxia 3 (SCA3), in spite of the positive results using AChE inhibitors in patients with other inherited ataxias. MJD/SCA3, the most common form of dominant Spinocerebellar Ataxia worldwide, is caused by an expansion of the polyglutamine tract within the ataxin-3 protein, and is characterized by motor impairments. Our study shows that administration of the AChE inhibitor neostigmine is beneficial in treating the locomotion defective phenotype of a SCA3/MJD model of C. elegans and highlights the potential contribution of AChE enzymes to mutant ataxin-3-mediated toxicity.

4.
J Clin Invest ; 134(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227368

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Ácido Tauroquenodesoxicólico , Camundongos , Adulto , Animais , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Receptores de Glucocorticoides/genética , Camundongos Transgênicos
6.
Cells ; 12(19)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37830611

RESUMO

Mitochondrial dysfunction has been described in many neurodegenerative disorders; however, there is less information regarding mitochondrial deficits in Machado-Joseph disease (MJD), a polyglutamine (polyQ) disorder caused by CAG repeat expansion in the ATXN3 gene. In the present study, we characterized the changes in mitochondrial function and biogenesis markers in two MJD models, CMVMJD135 (MJD135) transgenic mice at a fully established phenotype stage and tetracycline-regulated PC6-3 Q108 cell line expressing mutant ataxin-3 (mATXN3). We detected mATXN3 in the mitochondrial fractions of PC6-3 Q108 cells, suggesting the interaction of expanded ATXN3 with the organelle. Interestingly, in both the cerebella of the MJD135 mouse model and in PC6-3 Q108 cells, we found decreased mitochondrial respiration, ATP production and mitochondrial membrane potential, strongly suggesting mitochondrial dysfunction in MJD. Also, in PC6-3 Q108 cells, an additional enhanced glycolytic flux was observed. Supporting the functional deficits observed in MJD mitochondria, MJD135 mouse cerebellum and PC6-3 Q108 cells showed reduced cytochrome c mRNA and protein levels. Overall, our findings show compromised mitochondrial function associated with decreased cytochrome c levels in both cell and animal models of MJD.


Assuntos
Doença de Machado-Joseph , Camundongos , Animais , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Citocromos c/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Modelos Animais de Doenças
7.
Biomed Pharmacother ; 165: 115258, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549460

RESUMO

The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.


Assuntos
Doença de Machado-Joseph , Proteínas Nucleares , Animais , Humanos , Ataxina-3/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Dopamina , Reposicionamento de Medicamentos , Caenorhabditis elegans/metabolismo , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Dopaminérgicos
8.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445783

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Machado-Joseph/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos Transgênicos , Cálcio/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Progressão da Doença
9.
Biomedicines ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37371826

RESUMO

AIM: Experimental models are a powerful aid in visualizing molecular phenomena. This work reports how the worm Caenorhabditis elegans (C. elegans) can be effectively explored for students to learn how molecular cues dramatically condition axonal guidance and define nervous system structure and behavior at the organism level. Summary of work: A loosely oriented observational activity preceded detailed discussions on molecules implied in axonal migration. C. elegans mutants were used to introduce second-year medical students to the deleterious effects of gene malfunctioning in neuron response to extracellular biochemical cues and to establish links between molecular function, nervous system structure, and animal behavior. Students observed C. elegans cultures and associated animal behavior alterations with the lack of function of specific axon guidance molecules (the soluble cue netrin/UNC-6 or two receptors, DCC/UNC-40 and UNC-5H). Microscopical observations of these strains, in combination with pan-neuronal GFP expression, allowed optimal visualization of severely affected neurons. Once the list of mutated genes in each strain was displayed, students could also relate abnormal patterns in axon migration/ventral and dorsal nerve cord neuron formation in C. elegans with mutated molecular components homologous to those in humans. SUMMARY OF RESULTS: Students rated the importance and effectiveness of the activity very highly. Ninety-three percent found it helpful to grasp human axonal migration, and all students were surprised with the power of the model in helping to visualize the phenomenon.

10.
Cells ; 12(4)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831205

RESUMO

Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos do Neurodesenvolvimento , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurônios
11.
Neural Regen Res ; 18(6): 1203-1212, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36453395

RESUMO

Spinocerebellar ataxias are heritable neurodegenerative diseases caused by a cytosine-adenine-guanine expansion, which encodes a long glutamine tract (polyglutamine) in the respective wild-type protein causing misfolding and protein aggregation. Clinical features of polyglutamine spinocerebellar ataxias include neuronal aggregation, mitochondrial dysfunction, decreased proteasomal activity, and autophagy impairment. Mutant polyglutamine protein aggregates accumulate within neurons and cause neural dysfunction and death in specific regions of the central nervous system. Spinocerebellar ataxias are mostly characterized by progressive ataxia, speech and swallowing problems, loss of coordination and gait deficits. Over the past decade, efforts have been made to ameliorate disease symptoms in patients, yet no cure is available. Previous studies have been proposing the use of stem cells as promising tools for central nervous system tissue regeneration. So far, pre-clinical trials have shown improvement in various models of neurodegenerative diseases following stem cell transplantation, including animal models of spinocerebellar ataxia types 1, 2, and 3. However, contrasting results can be found in the literature, depending on the animal model, cell type, and route of administration used. Nonetheless, clinical trials using cellular implants into degenerated brain regions have already been applied, with the expectation that these cells would be able to differentiate into the specific neuronal subtypes and re-populate these regions, reconstructing the affected neural network. Meanwhile, the question of how feasible it is to continue such treatments remains unanswered, with long-lasting effects being still unknown. To establish the value of these advanced therapeutic tools, it is important to predict the actions of the transplanted cells as well as to understand which cell type can induce the best outcomes for each disease. Further studies are needed to determine the best route of administration, without neglecting the possible risks of repetitive transplantation that these approaches so far appear to demand. Despite the challenges ahead of us, cell-transplantation therapies are reported to have transient but beneficial outcomes in spinocerebellar ataxias, which encourages efforts towards their improvement in the future.

12.
J Prosthet Dent ; 129(2): 365.e1-365.e8, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462969

RESUMO

STATEMENT OF PROBLEM: Stone casts are subject to contamination, but whether disinfectants incorporated into the stone are effective is unclear. PURPOSE: The purpose of this in vitro study was to evaluate the antimicrobial activity and the mechanical and surface properties of self-disinfecting gypsum (SDG) and gypsum mixed with 2% chlorhexidine (GCHX). MATERIAL AND METHODS: Antimicrobial action was evaluated using the diffusion-disk technique on Streptococcus aureus and Candida albicans 1 hour and 24 hours after pouring the gypsum. The groups were SDG, GCHX, a positive control (PC) of gypsum mixed with distilled water, and a negative control (NC) of filter paper disk soaked with 2% chlorhexidine; n=8. Inhibition halos were measured using the ImageJ software program and statistically analyzed using the repeated measures mixed ANOVA with time×group interaction. Compressive strength (CS) in MPa and surface roughness (SR) in µm (parameters: Ra - roughness average; and Sa - 3-dimensional (3D) arithmetic mean of the surface profile) tests were performed to characterize the specimens (evaluated groups: SDG, GCHX, and PC; n=10). CS data were analyzed by a 2-way ANOVA with time×group interaction, and SR data by a 1-way ANOVA (α=.05). RESULTS: For S aureus, there were differences between GCHX and SDG at 1 hour and 24 hours (P<.05), but no significant differences were found for C albicans (P>.05). GCHX was better than PC, except for C albicans, and showed a reduction in CS when compared with PC and SDG (P<.05) at all time intervals. The SR of GCHX increased (Ra:1.76, Sa:2.08) when compared with PC (Ra:0.89, Sa:1.12) and SDG (Ra:1.03, Sa:1.35) (Ra: P<.004 and Sa: P<.001). CONCLUSIONS: The antimicrobial activity of GCHX against S aureus was better than that of SDG, but neither had an effect against C albicans. As for CS and SR, GCHX presented a decrease in properties when compared with PC and SDG but was within the American Dental Association #25 specification values.


Assuntos
Sulfato de Cálcio , Desinfetantes , Clorexidina/farmacologia , Clorexidina/uso terapêutico , Propriedades de Superfície , Teste de Materiais
13.
Nat Genet ; 54(9): 1320-1331, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982160

RESUMO

Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Humanos , Mutação
14.
Cells ; 11(13)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35805106

RESUMO

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disorder (ND). While most research in NDs has been following a neuron-centric point of view, microglia are now recognized as crucial in the brain. Previous work revealed alterations that point to an increased activation state of microglia in the brain of CMVMJD135 mice, a MJD mouse model that replicates the motor symptoms and neuropathology of the human condition. Here, we investigated the extent to which microglia are actively contributing to MJD pathogenesis and symptom progression. For this, we used PLX3397 to reduce the number of microglia in the brain of CMVMJD135 mice. In addition, a set of statistical and machine learning models were further implemented to analyze the impact of PLX3397 on the morphology of the surviving microglia. Then, a battery of behavioral tests was used to evaluate the impact of microglial depletion on the motor phenotype of CMVMJD135 mice. Although PLX3397 treatment substantially reduced microglia density in the affected brain regions, it did not affect the motor deficits seen in CMVMJD135 mice. In addition to reducing the number of microglia, the treatment with PLX3397 induced morphological changes suggestive of activation in the surviving microglia, the microglia of wild-type animals becoming similar to those of CMVMJD135 animals. These results suggest that microglial cells are not key contributors for MJD progression. Furthermore, the impact of PLX3397 on microglial activation should be taken into account in the interpretation of findings of ND modification seen upon treatment with this CSF1R inhibitor.


Assuntos
Doença de Machado-Joseph , Animais , Ataxina-3/genética , Modelos Animais de Doenças , Progressão da Doença , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Camundongos , Microglia/patologia
15.
Dis Model Mech ; 15(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660856

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset, progressive ataxia. SCA3 presents with ataxia before any gross neuropathology. A feature of many cerebellar ataxias is aberrant cerebellar output that contributes to motor dysfunction. We examined whether abnormal cerebellar output was present in the CMVMJD135 SCA3 mouse model and, if so, whether it correlated with the disease onset and progression. In vivo recordings showed that the activity of deep cerebellar nuclei neurons, the main output of the cerebellum, was altered. The aberrant activity correlated with the onset of ataxia. However, although the severity of ataxia increased with age, the severity of the aberrant cerebellar output was not progressive. The abnormal cerebellar output, however, was accompanied by non-progressive abnormal activity of their upstream synaptic inputs, the Purkinje cells. In vitro recordings indicated that alterations in intrinsic Purkinje cell pacemaking and in their synaptic inputs contributed to abnormal Purkinje cell activity. These findings implicate abnormal cerebellar physiology as an early, consistent contributor to pathophysiology in SCA3, and suggest that the aberrant cerebellar output could be an appropriate therapeutic target in SCA3.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Ataxias Espinocerebelares , Animais , Ataxia/patologia , Ataxia Cerebelar/patologia , Cerebelo/patologia , Doença de Machado-Joseph/patologia , Camundongos , Neurônios/patologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/patologia
16.
Cell Mol Life Sci ; 79(5): 274, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35503478

RESUMO

Polyglutamine (PolyQ) diseases include a group of inherited neurodegenerative disorders caused by unstable expansions of CAG trinucleotide repeats in the coding region of specific genes. Such genetic alterations produce abnormal proteins containing an unusually long PolyQ tract that renders them more prone to aggregate and cause toxicity. Although research in the field in the last years has contributed significantly to the knowledge of the biological mechanisms implicated in these diseases, effective treatments are still lacking. In this review, we revisit work performed in models of PolyQ diseases, namely the yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and provide a critical overview of the high-throughput unbiased genetic screens that have been performed using these systems to identify novel genetic modifiers of PolyQ diseases. These approaches have revealed a wide variety of cellular processes that modulate the toxicity and aggregation of mutant PolyQ proteins, reflecting the complexity of these disorders and demonstrating how challenging the development of therapeutic strategies can be. In addition to the unbiased large-scale genetic screenings in non-vertebrate models, complementary studies in mammalian systems, closer to humans, have contributed with novel genetic modifiers of PolyQ diseases, revealing neuronal function and inflammation as key disease modulators. A pathway enrichment analysis, using the human orthologues of genetic modifiers of PolyQ diseases clustered modifier genes into major themes translatable to the human disease context, such as protein folding and transport as well as transcription regulation. Innovative genetic strategies of genetic manipulation, together with significant advances in genomics and bioinformatics, are taking modifier genetic studies to more realistic disease contexts. The characterization of PolyQ disease modifier pathways is of extreme relevance to reveal novel therapeutic possibilities to delay disease onset and progression in patients.


Assuntos
Drosophila melanogaster , Peptídeos , Animais , Caenorhabditis elegans/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Testes Genéticos , Humanos , Mamíferos/genética , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
Biomedicines ; 10(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35203447

RESUMO

Microglia have been increasingly implicated in neurodegenerative diseases (NDs), and specific disease associated microglia (DAM) profiles have been defined for several of these NDs. Yet, the microglial profile in Machado-Joseph disease (MJD) remains unexplored. Here, we characterized the profile of microglia in the CMVMJD135 mouse model of MJD. This characterization was performed using primary microglial cultures and microglial cells obtained from disease-relevant brain regions of neonatal and adult CMVMJD135 mice, respectively. Machine learning models were implemented to identify potential clusters of microglia based on their morphological features, and an RNA-sequencing analysis was performed to identify molecular perturbations and potential therapeutic targets. Our findings reveal morphological alterations that point to an increased activation state of microglia in CMVMJD135 mice and a disease-specific transcriptional profile of MJD microglia, encompassing a total of 101 differentially expressed genes, with enrichment in molecular pathways related to oxidative stress, immune response, cell proliferation, cell death, and lipid metabolism. Overall, these results allowed us to define the cellular and molecular profile of MJD-associated microglia and to identify genes and pathways that might represent potential therapeutic targets for this disorder.

18.
Biomedicines ; 10(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35203579

RESUMO

The atypical antipsychotic aripiprazole is a Food and Drug Administration-approved drug for the treatment of psychotic, mood, and other psychiatric disorders. Previous drug discovery efforts pinpointed aripiprazole as an effective suppressor of Machado-Joseph disease (MJD) pathogenesis, as its administration resulted in a reduced abundance and aggregation of mutant Ataxin-3 (ATXN3) proteins. Dopamine partial agonism and functional selectivity have been proposed as the main pharmacological mechanism of action of aripiprazole in the treatment of psychosis; however, this mechanism remains to be determined in the context of MJD. Here, we focus on confirming the efficacy of aripiprazole to reduce motor dysfunction in vivo, using a Caenorhabditis elegans (C. elegans) model of MJD, and on unveiling the drug targets required for its positive action against mutant ATXN3 pathogenesis. We employed pharmacogenetics and pharmacological approaches to identify which dopamine and serotonin receptors are critical for aripiprazole-mediated improvements in motor function. We demonstrated that dopamine D2-like and serotonin 5-HT1A and 5-HT2A receptors play important roles in this process. Our findings strengthen the relevance of dopaminergic and serotoninergic signaling modulation against mutant ATXN3-mediated pathogenesis. The identification of aripiprazole's cellular targets, relevant for MJD and perhaps other neurodegenerative diseases, may pave the way for prospective drug discovery and development campaigns aiming to improve the features of this prototypical compound and reduce side effects not negligible in the case of aripiprazole.

19.
Neurobiol Dis ; 162: 105578, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871736

RESUMO

Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic modifiers, analyse their epistatic effects and identify disease-modifying pathways contributing to MJD variable expressivity. We performed whole-exome sequencing in a discovery sample of four age at onset concordant and four discordant first-degree relative pairs of Azorean patients, to identify candidate variants which genotypes differed for each discordant pair but were shared in each concordant pair. Variants identified by this approach were then tested in an independent multi-origin cohort of 282 MJD patients. Whole-exome sequencing identified 233 candidate variants, from which 82 variants in 53 genes were prioritized for downstream analysis. Eighteen disease-modifying pathways were identified; two of the most enriched pathways were relevant for the nervous system, namely the neuregulin signaling and the agrin interactions at neuromuscular junction. Variants at PARD3, NFKB1, CHD5, ACTG1, CFAP57, DLGAP2, ITGB1, DIDO1 and CERS4 modulate age at onset in MJD, with those identified in CFAP57, ACTG1 and DIDO1 showing consistent effects across cohorts of different geographical origins. Network analyses of the nine novel MJD modifiers highlighted several important molecular interactions, including genes/proteins previously related with MJD pathogenesis, namely between ACTG1/APOE and VCP/ITGB1. We describe novel pathways, modifiers, and their interaction partners, providing a broad molecular portrait of age at onset modulation to be further exploited as new disease-modifying targets for MJD and related diseases.


Assuntos
Doença de Machado-Joseph , Idade de Início , Alelos , DNA Helicases/genética , Genótipo , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Proteínas do Tecido Nervoso/genética , Sequenciamento do Exoma
20.
Biomedicines ; 9(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34944570

RESUMO

The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)-or Machado-Joseph disease (MJD)-is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders. Beyond their differentiation potential, MSCs secrete a broad range of neuroregulatory factors that can promote relevant neuroprotective and immunomodulatory actions in different pathophysiological contexts. The objective of this work was to study the effects of (1) human MSC transplantation and (2) human MSC secretome (CM) administration on disease progression in vivo, using the CMVMJD135 mouse model of SCA3/MJD. Our results showed that a single CM administration was more beneficial than MSC transplantation-particularly in the cerebellum and basal ganglia-while no motor improvement was observed when these cell-based therapeutic approaches were applied in the spinal cord. However, the effects observed were mild and transient, suggesting that continuous or repeated administration would be needed, which should be further tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...